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Acid-induced conformational switching of aromatic
N-methyl-N-(2-pyridyl)amides
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Abstract—Aromatic N-methyl amides containing N-(2-pyridyl) and 2-pyridinecarboxamide or 2,6-pyridinedicarboxamide moieties
switch their conformation from cis to trans depending upon the addition of acid.
� 2006 Elsevier Ltd. All rights reserved.
Conformational switching, especially switching induced
by environmental change, plays a key role in controlling
the functions of materials that respond to external stim-
uli.1 Among various compounds that are available as
components of such functionalized materials, amide is
one of the most promising chemical structures because
it can be conformationally altered by either structural
modification or alteration of their chemical environ-
ment. For example, N-methylation of benzanilide causes
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Scheme 2. Pyridine-containing aromatic N-methyl amides.
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Scheme 1. Trans- and cis-formed aromatic amides.
almost complete conformational change from trans to
cis (Scheme 1), which are generally observed in N-alkyl-
ation of secondary aromatic amides.2,3

N,N-Diaryl type amides also show characteristic fea-
tures of conformational preference.4a,5 On the other
hand, only a few examples have been reported of envi-
ronmental change causing complete conformational
conversion of an amide skeleton; these examples include
conformational switching of N,N-diphenylamides
induced by protons and of N-phenylhydroxamic acid
induced by solvent effects.4

We have reported that an N-methyl amide containing
N-(2-pyridyl) and 2,6-pyridinedicarboxamide moieties
switches its conformation depending upon the acceptor
ability of the solvent.6 Here, we describe the steric fea-
tures of pyridine-containing aromatic N-methyl amides
1–3 (Scheme 2), and their conformational characteristics
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Figure 1. Crystal structure of amide 1.

Figure 2. Crystal structures of amides 2 (upper) and 3 (lower).
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in solution and in the crystal state. Each amide under-
goes an acid-induced conformational change, and 1
and 3 switch their conformation from cis to trans in
the presence of acid.

The amide bonds of 1 and 2 exist mainly in cis confor-
mation in solution. Amide 3 exists predominantly in
cis–cis conformation in dichloromethane or methanol,
but tends to form cis–trans conformation in other
solvents.6

X-ray crystallographic analysis was conducted to estab-
lish the crystal structures of these N-methyl pyridyl
amides.7 Compound 1 shows the characteristic struc-
tural features of aromatic N-methyl amides, that is,
the two aromatic rings are in a cis relationship
(Fig. 1). The dihedral angle of the amide bond plane
and pyridine ring connected with the amide carbonyl
group (C-pyridine) is smaller than that of the amide
plane and N-pyridine,8 and the nitrogen atom of the
C-pyridine ring lies in the anti direction to the carbonyl
oxygen.

The crystal structures of amides 2 and 3, bearing three
pyridine rings, were also examined (Fig. 2).9 Although
the two amide bonds in 2 take cis conformation, those
in 3 take cis–trans conformation. The two carbonyl
groups in 3 lie in the anti direction to the central pyri-
dine nitrogen atom, and the steric repulsion between
the two terminal pyridine rings is apparently released
in this trans conformation.

Next we investigated the conformational change of these
amides upon addition of acid. The addition of perchloric
acid to a solution of amide 1 in ethyl acetate gave per-
chlorate 1H as a precipitate. Elemental analysis revealed
that 1H contains 1 and HClO4 in 1:2 ratio. Similar treat-
ments of solutions of 2 and 3 gave the corresponding
salts 2H and 3H, respectively, which also contain the
amide and HClO4 in 1:2 ratio.10 On the other hand,
addition of trifluoroacetic acid to solutions of 1–3 in
various solvents did not result in precipitation of the
salts.
Comparison of the 1H NMR spectra of the amides in
the presence of acids revealed the proton-accepting char-
acter of 1–3. Addition of TFA-d to the amides produced
a lower field shift of the aromatic proton signals. Excess
TFA-d saturated this field shift. Figure 3 shows the spec-
tra of 3, 3 in the presence of excess TFA-d, and 3H, and
3 in the presence of excess DClO4. Since the spectrum of
3 in the presence of excess TFA (b) is similar to that of
3H (c) and shows equivalent signals of terminal pyri-
dines, it is considered that only the two terminal pyri-
dine rings are protonated by TFA.

In order to examine the nature of the conformational
change, the chemical shifts and the lower field shifts
caused by addition of TFA were compared (Table 1).
Since entries 1 and 3 show that H-3 0, H-4 0, H-5 0, and
H-6 0 of 1 and those of 3 each show good accordance
of chemical shift and lower field shift, the N-pyridine
rings of 1 and 3 apparently undergo similar structural
conversions. However, a comparison of entries 1 and 2
reveals significant differences. Although the chemical
shifts of H-3, H-4, H-5, and H-6 in the C-pyridine rings
of amide 2 take similar values to those of amide 1, the



Figure 3. 1H NMR spectra in CD3CN of (a) 3; (b) 3 with TFA-d (150 equiv); (c) 3H, and (d) 3 with DClO4 (30 equiv).

Table 1. Chemical shifts of amides 1–3 and their lower field shifts upon addition of TFA-d (150 equiv)

Entry Amide H-3a H-4 H-5 H-6 H-30 H-4 0 H-5 0 H-60

1 1 7.63b +0.7b 7.72 +1.1 7.21 +1.1 8.27 +0.8 7.01 +0.9 7.52 +1.2 7.01 +0.9 8.27 +0.4
2 2 7.60 ±0.0 7.73 +0.7 7.24 +0.8 8.31 +0.6 6.75 +0.6 7.39 +0.6 — — — —
3 3 7.58 +0.5 7.75 +0.5 — — — — 7.00 +0.7 7.56 +1.0 7.04 +0.8 8.25 +0.3

a The numbering of aromatic protons is as follows:
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b Chemical shifts are recorded in ppm in the left column, and lower field shifts are recorded in the right column in ppm.
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lower field shifts of H-3, H-4, and H-5 are apparently
smaller in the case of 2.11 These differences suggest that
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Scheme 3. Conformational change of 2 induced by addition of acid.
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Scheme 4. NOE measurements of amides 1–3 with TFA-d in CD3CN.
while amide 1 changes its major conformation from cis
to trans on addition of TFA, amide 2 does not switch
to trans form. In the case of 2, the protonated C-pyri-
dine nitrogen atom may lie in the syn position with
respect to the carbonyl group owing to hydrogen bond
formation. This rotation results in an anisotropic effect
of the neighboring aromatic group in the cis position
on the H-3 proton of 2, resulting in the absence of any
lower field shift (Scheme 3).12

Conformational switching to the trans conformer was
also confirmed by NOE measurements on 1, 2, and 3
with TFA-d (Scheme 4).
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Figure 4. Crystal structures of salts 2H (upper) and 3H (lower).
Counter anions are omitted for clarity.
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Recrystallization of the protonated salts 2H and 3H
afforded suitable crystals for X-ray crystallography.
The crystal structures of perchlorates 2H and 3H are
shown in Figure 4.13

Both salts consist of amide and perchloric acid in 1:2
ratio. In 2H, the two terminal pyridine nitrogen atoms
are protonated, whereas the more electron-rich central
pyridine is not protonated. Both amide bonds remain
in cis conformation, while the protonated pyridine
nitrogen atoms lie in the syn direction with respect to
carbonyl oxygen, in contrast to the structure of 2. On
the other hand, salt 3H, in which the two terminal
pyridine nitrogen atoms are protonated, shows trans–
trans conformation. Conformational switching from
cis to trans was observed in this case.

In conclusion, we investigated the acid-induced confor-
mational switching of aromatic amides containing 2-
and 2,6-disubstituted pyridine rings. Amide 1 showed
protonation-dependent switching of cis–trans conforma-
tion. The pyridyl amides with three pyridine rings were
protonated preferentially at terminal pyridine nitrogens,
and this protonation leads to cis–trans conformational
switching of 3. These results indicate that the aromatic
amides containing a sterically unhindered pyridine ring
can be used as functional structural units that can work
as acid-induced molecular switches.
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135.001(10)�, V = 4397(2) Å3, T = 150 K, space group P21/c
(no. 14), Z = 8, Dc = 1.657 Mg m�3, l(Mo-Ka) = 0.366
mm�1, 23,195 reflections measured, 9716 unique
(Rint = 0.0478) which were used in all calculations. The
final R1 and wR(F2) were 0.0973 and 0.1890, respectively
(all data). CCDC-625152.


	Acid-induced conformational switching of aromatic  N-methyl-N-(2-pyridyl)amides
	References and notes


